Sintering LiTaO₃ and KTaO₃ with the aid of manganese oxide

SHIRO SHIMADA, KOHEI KODAIRA, TORU MATSUSHITA Department of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

The sintering of LiTaO₃ and KTaO₃ with the aid of manganese oxide was studied at 1080 to 1300° C by X-ray analysis, scanning electron microscopy (SEM) and X-ray microanalysis (XMA). The sintering of pure LiTaO₃ and KTaO₃ proceeds concurrently with grain growth, but only achieves a density of 83% at 1300° C and of 72% at 1280° C, respectively. The addition of 3 wt % of MnO₂ or Mn₃O₄ results in rapid densification of LiTaO₃ to 90 to 92% within 30 min at 1190° C. In the presence of manganese oxide, KTaO₃ densifies to 95% at 1280° C. The action of manganese oxide is attributed to the substitution of Mn³⁺ for Ta⁵⁺ in the LiTaO₃ or KTaO₃ lattice which enhances the diffusion of the rate-determining species, oxygen, in the oxide. In addition, a liquid phase formed at 1250° C in KTaO₃ may significantly contribute to the achievement of 95% densification.

1. Introduction

Alkali niobates and tantalates are useful ferroelectric materials and their single crystals are very important opto-electric materials. Although there are many reports on the growth and properties of alkali niobate and tantalate crystals, few studies have been made of their sintering behaviour. The preparation of dense sintered alkali niobate and tantalate ceramics is of great interest because of their potentially useful dielectric properties. From this viewpoint, we have already prepared 98% dense LiNbO₃ ceramics by the addition of CdO which promotes rapid densification and hinders exaggerated grain growth [1]. The sintering of KTaO₃ has been also studied, a 96% dense material having been produced in a dry air atmosphere [2].

As a continuation of this experimental programme, a study of the preparation and sintering of dense LiTaO₃ and KTaO₃ ceramics was undertaken. Since both LiTaO₃ and KTaO₃ are difficult to sinter to high density, an additive was sought which would enable high densification to be achieved. As a result, manganese oxide was found to be an efficient promoter, enabling LiTaO₃ and KTaO₃ to be sintered to densities of 90 to 95%. This paper describes the sintering of LiTaO₃ and $KTaO_3$ in the presence of manganese oxide and discusses the promoting mechanism.

2. Experimental details

The starting materials were tantalum pentoxide (99.9% pure, Mitsuwa Chem. Co.), lithium carbonate and potassium hydrogen carbonate (both were reagent grade, obtained from Kanto Chem. Co.).

An equimolecular mixture of Ta₂O₅ and Li₂CO₃ powder was blended in an agate mortar for 1 h and heated at 900° C for 2 h to obtain single phase LiTaO₃. The LiTaO₃ powder consisted of agglomerates predominantly 5 to 10 times the crystallite size of about $1.0 \,\mu\text{m}$. Of the 24 different oxides which were tested as possible sintering additives for LiTaO3, manganese oxide, MnO₂, was found to be the most effective. Mixtures of LiTaO₃ powder with varying amounts of MnO₂ were mechanically blended in a mortar for 3 h, then pressed at 70 MPa into pellets 2 to 3 mm in thickness and 16 mm in diameter. A pellet was packed in a powder of the same composition and heated at 1125 to 1300° C for 5 to 120 min in air. The relative densities (R) of the sintered compacts were determined by accurate weighing the dimensional measurement using a micrometer. The theoretical density was taken as $7.45 \,\mathrm{g \, cm^{-3}}$ of single crystal of LiTaO₃ [3].

Mixtures of Ta₂O₅ and KHCO₃ powders in a 1:2 molar ratio were heated at 900° C for 4 h in air and ground in an agate mortar. This procedure was repeated twice to complete the formation of polycrystalline KTaO₃, which consisted of agglomerates of 10 to 50 times the crystallite size of about $0.5 \,\mu\text{m}$. Addition of 9 different oxides known to facilitate the sintering of LiNbO3 and $LiTaO_3$ were tested for their effect on $KTaO_3$; magnanese oxide, Mn₃O₄, was agian found to be the most effective. A set of sintering experiments similar to those with LiTaO₃ were carried out with mixtures of KTaO₃ and Mn₃O₄ powders. Sintering was carried out at 1080 to 1280° C for 30 to 360 min in air. The theoretical density was determined to be $7.013 \,\mathrm{g \, cm^{-3}}$ from the lattice constant of this KTaO₃ powder.

Fractured surfaces of sintered LiTaO₃ and KTaO₃ compacts were used for SEM measurements of the average grain size by the standard stereological technique. Fractured surfaces were also polished with 0.25 μ m diamond paste for analysis of MnK α line. The dielectric constant (ϵ) and the loss tangent (tan δ) of sintered compacts of LiTaO₃ and KTaO₃ at 600 kHz and 200 kHz, respectively, were determined at room temperature using a Q-meter.

3. Results

3.1. Sintering of LiTaO₃

Table I shows the densities of LiTaO₃ compacts sintered at 1125°C for 2h in air with 3 wt % of various oxide additives. The addition of the transition metal oxides, MnO_2 , CoO, Fe_2O_3 (or Fe_3O_4) and CuO promotes sintering while Sb₂O₃, Cr₂O₃ and B_2O_3 hinder it. MnO₂ is the most effective additive. Fig. 1 shows the effect of MnO₂ content on the sintering of LiTaO₃, from which it is seen that as the MnO_2 content varies from 3 to 5 wt %, the density increases to 85%, then decreases. The densities of sintered compacts of LiTaO₃, both pure and with 3 wt % of added MnO₂, are plotted against log(time) in Fig. 2. Although slight densification occurs in pure LiTaO₃ at 1190 to 1250° C, the density increases linearly with log time at 1300° C, reaching 83% after 2 h. The addition of MnO₂ causes rapid densification even at 1125 to 1190° C, leading to a density of 85 to 90% within 30 min and essentially ceasing after that. Iso-

TABLE I Relative density of sintered compacts of LiTaO₃ with 3 wt% oxide (sintering condition: 1125° C, 2 h, in air)

Oxide	Density (%)	
none	60	
MnO ₂	85	
CoO	79	
Fe ₂ O ₃	79	
Fe ₃ O ₄	74	
CuO	73	
Bi ₂ O ₃	72	
GeO ₂	70	
MgO	69	
V ₂ O ₅	69	
CdO	68	
SiO ₂	65	
ZnO	63	
TiO ₂	63	
In ₂ O ₃	60	
PbO	60	
CaO	60	
NiO	60	
Al_2O_3	56	
SnO ₂	56	
Nb ₂ O ₅	55	
ThO ₂	55	
Sb ₂ O ₃	54	
Cr ₂ O ₃	54	
B ₂ O ₃	52	

Figure 1 Density dependence on MnO_2 or Mn_3O_4 concentration for LiTaO₃ sintered at 1125°C for 2 h or KTaO₃ sintered at 1280°C for 1.5 h, respectively. \circ : LiTaO₃, \triangle : KTaO₃.

Figure 2 Relationship between relative density and log time: pure LiTaO₃; \circ : 1125°C, \bullet : 1190°C, \circ : 1250°C, \circ : 1300°C MnO₂-containing LiTaO₃; \Box : 1125°C, Ξ : 1175°C, \bullet : 1190°C.

thermal grain growth data are plotted in Fig. 3. In pure LiTaO₃, grain growth proceeds in a similar way to that of densification (Fig. 2), approximately following the equation $G^3 = Kt$ at 1250 to 1300°C (where G is the grain size, K is a constant and t is time). The addition of MnO₂

TABLE II Relative density of sintered compacts of $KTaO_3$ with 3 wt % oxide (sintering condition: $1280^\circ C$, 1.5 h, in air)

Oxide	Density (%)
none	72
Mn ₁ O ₄	95
Fe,O,	90
MnO ₂	90
CoO (or Co_3O_4)	88
ZnO	85
Fe ₃ O ₄	81
CdO	80
GeO ₂	79
Y_2O_3	70

causes the grain size to increase rapidly to $> 10 \,\mu\text{m}$ within 30 min at 1125 to 1190°C. Further grain size increases are more gradual.

3.2. Sintering of KTaO₃

Table II shows the densities of sintered $KTaO_3$ compacts with 9 different oxides at 1280° C for 1.5 h in air. It is evident that Mn_3O_4 is the most effective in promoting $KTaO_3$ sintering. The influence of the Mn_3O_4 content on the density is shown in Fig. 1, indicating that 2 to 3 wt % is an optimum amount. Fig. 4 shows the densities of $KTaO_3$ compacts, both pure and containing 3 wt % Mn_3O_4 , sintered at 1080 to 1280° C for 1.5 h in

Figure 3 Isothermal grain growth of sintered compacts of pure and MnO_2 -containing LiTaO₃. The point identification is the same as in Fig. 2.

Figure 4 Density dependence on temperature for $KTaO_3$, sintered for 1.5 h. o: pure $KTaO_3$, \triangle : Mn_3O_4 -containing $KTaO_3$.

Figure 5 Relationship between relative density and log time: pure $KTaO_3$; \circ : 1180°C, \circ : 1230°C, \circ : 1280°C Mn_3O_4 -containing $KTaO_3$; \diamond : 1280°C.

air. In pure KTaO₃, the density increases with increasing temperature, but densities of only 72% are attained even at 1280° C. Thus, pure KTaO₃ is very difficult to sinter. The addition of Mn₃O₄ obviously assists the sintering of KTaO₃, resulting in a much greater density (95% at 1280° C). Fig. 5

shows the sintering rates for both pure and Mn_3O_4 containing KTaO₃. The pure KTaO₃ shows a gradual linear increase in density with log time. In th presence of Mn_3O_4 , the density reaches 92% within 30 min at 1280° C.

3.3. Dielectric constants and tan δ of sintered compacts of LiTaO₃ and KTaO₃

Fig. 6 shows the relationship between the log dielectric constant (ϵ) of the sintered compacts and their density. The ϵ value increases linearly with increasing density for both LiTaO₃ and KTaO₃. The values of ϵ for LiTaO₃ and KTaO₃ (50 and 440, respectively) determined by extrapolation of the straight line to the ordinate corresponding to R = 100%, are typical of the values expected for fully dense ceramics. The value of ϵ for KTaO₃ (~ 440) is greater than that of single crystal specimens ($\epsilon = 243$). The tan δ values are in the range 0.002 to 0.03 for LiTaO₃ and 0.02 to 0.12 for KTaO₃.

4. Discussion

4.1. Sintering of LiTaO₃

Densification of pure LiTaO₃ occurs concurrently with grain growth at 1190 to 1300° C (Figs. 2 and 3): SEM photographs show that at 1125° C, grain growth occurs only within the agglomerates.

Figure 6 Relationship between the dielectric constant of sintered compacts of LiTaO₃ and KTaO₃ and their density. \triangle : pure LiTaO₃, \triangle : MnO₂-containing LiTaO₃ \circ : pure KTaO₃, \circ : Mn₃O₄-containing KTaO₃.

Figure 7 Scanning electron micrographs of fractured surface of sintered compacts of LiTaO₃: (a) pure LiTaO₃ sintered at 1300° C for 2 h; (b) MnO₂-containing LiTaO₃ sintered at 1195° C for 2 h.

Prolonged heat treatment for $\ge 120 \text{ min}$ at 1300° C results in the development of large grains, resulting from the onset of exaggerated grain growth, as shown in Fig. 7a. This prevents densification greater than 83%. The presence of MnO₂ promotes the sintering of LiTaO₃ such that a density of 85 to 90% is reached within 30 min, after that further density increases are not observed in spite of a slight increase in grain size with time. It is clear that this cessation of densification is due to very rapid grain growth resulting in the formation of residual cavities or pores on the grain boundaries (Fig. 7b).

MnO₂ was found to decompose to Mn₃O₄ at about 900° C by X-ray analysis, indicating all the manganese is present as Mn₃O₄ at the sintering temperatures of 1125 to 1190° C. It is this Mn₃O₄ which promotes the sintering of LiTaO3. Since the ionic radius of O^{2-} (r = 0.140 nm) is much larger than that of Ta^{5+} (r = 0.064 nm) [4] or Li⁺ (r = 0.074 nm) [4], it seems likely that the ratecontrolling step in the sintering of LiTaO₃ is the diffusion of oxygen. The ionic radius of Mn³⁺ (r = 0.065 nm) [4] is almost the same as that of Ta⁵⁺, suggesting that Mn³⁺ ions could substitute for Ta⁵⁺ in the LiTaO₃ lattice, thereby producing oxygen vacancies which facilitate the diffusion of oxygen in LiTaO₃ and its rapid densification. Evidence for the dissolution of manganese ions in $LiTaO_3$ is provided by the XMA result that manganese is almost homogeneously distributed on the polished surfaces of the LiTaO₃ ceramic samples. Since the manganese is present as Mn₃O₄ under the sintering conditions, an attempt was made to achieve similarly high densification by

the addition of Mn_3O_4 , but exaggerated grain growth occurred again in this sample, which hindered densification of > 92%.

4.2. Sintering of KTaO₃

The densification in pure KTaO₃ proceeds slowly with increasing temperature or with log time (Figs. 4 and 5). Grain growth was also found to occur slowly with increasing temperature: even at 1280° C the grain sizes were only 0.5 to $1.0 \,\mu$ m (Fig. 8a). These results suggest that densification in pure KTaO₃ occurs concurrently with grain growth. The addition of Mn₃O₄ causes rapid densification of KTaO₃ as was the case with LiTaO₃. A DTA experiment with KTaO₃ powder containing 3 wt% Mn₃O₄ showed a small broad endothermic peak at 1250°C, followed by a large peak at 1330°C. Since both peaks were reversible on cooling, the former is possible due to the formation of a liquid phase and the latter due to the melting of KTaO3, its temperature lowered by the presence of Mn₃O₄ (the melting point of pure $KTaO_3$ is reported to be 1370° C). The formation of a liquid phase is confirmed by the SEM observation of a partially melted appearance of the fractured surface of a compact sintered at 1280° C (Fig. 8b). This liquid phase is probably a manganese-containing compound which results from reaction of Mn₃O₄ with KTaO₃, since the XMA result on the polished surface indicates that manganese is mainly concentrated on the grain boundaries. Therefore, Mn_3O_4 appears to promote the sintering of KTaO₃ by two processes: the formation of a liquid phase and partial substitution of Mn^{3+} for Ta^{5+} in $KTaO_3$ to produce

Figure 8 Scanning electron micrographs of fractured surface of sintered compacts of $KTaO_3$: (a) pure $KTaO_3$ sintered at 1280° C for 1.5 h; (b) Mn_3O_4 -containing $KTaO_3$ sintered at 1280° C for 1.5 h.

oxygen vacancies similar to those postulated in $LiTaO_3$. The contribution of the liquid phase is particularly significant at higher temperatures, and explains rapid densification of KTaO₃ above 1250° C.

5. Conclusion

The sintering of LiTaO₃ and KTaO₃ with the aid of Mn_3O_4 was studied at 1125 to 1300° C and at 1080 to 1280° C, respectively.

The sintering of the pure phases was found to proceed concurrently with grain growth. $LiTaO_3$ was not able to sinter to greater than 83% density at 1300° C, due to exaggerated grain growth. Pure KTaO₃ was difficult to sinter to densities greater than 72% at 1280° C.

Of the many oxides tested, addition of 3 wt %of Mn_3O_4 was found to the most effective in promoting densification in both LiTaO₃ and KTaO₃. In the presence of Mn_3O_4 , LiTaO₃ could be densified to $\sim 92\%$ at 1190° C and KTaO₃ was densified to 95% at 1280° C. The effect of Mn_3O_4 can be explained in terms of the substitution of Mn^{3+} for Ta⁵⁺ in LiTaO₃ or KTaO₃ which enhances the diffusion of oxygen. Additionally the formation of a liquid phase at 1250° C in KTaO₃ makes a significant contribution to the achievement of 95% density.

Acknowledgement

We are indebted to Drs T. Okutani and J. Fukushima for XMA. The experimental assistance of H. Kosaka and A. Kosugi was greatly appreciated.

References

- 1. S. SHIMADA, K. KODAIRA, T. MATSUSHITA, K. ICHIJO and R. MAEDA, Ceram. Intern. 4 (1978) 167.
- 2. K. KODAIRA, J. SHIOYA, S. SHIMADA and T. MATSUSHITA, J. Mater. Sci. Lett. 1 (1982) 277.
- 3. A. W. WARNER and M. ONCE, Programme 1966 Ultrasonic Symposium. Cleaveland, Ohio, USA, October 1966.
- 4. R. D. SHANNON and C. T. PREWITT, Acta Crystallogr. B25 (1969) 925.

Received 4 August and accepted 13 September 1983